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On the Myopic Policy for a Class of Restless Bandit Problems

with Applicationsin Dynamic Multichannel Access

Keqin Liu and Qing Zhao

Abstract

We consider a class of restless multi-armed bandit problems that arises in multi-channel opportunis-
tic communications, where channels are modeled as independent and stochastically identical Gilbert-
Elliot channels and channel state observations are subject to errors. We show that the myopic channel
selection policy has a semi-universal structure that obviates the need to know the Markovian transition
probabilities of the channel states. Based on this semi-universal structure, we establish closed-form
lower and upper bounds on the maximum throughpuat, (average reward) achieved by the myopic
policy. Furthermore, we characterize the approximation factor of the myopic policy by considering a

genie-aided system.

Index Terms

Dynamic multi-channel access, restless multi-armed bandit, myopic policy

I. INTRODUCTION
A. Dynamic Multichannel Access

We consider the following stochastic optimization problem that arises in multichannel op-
portunistic communications. Assume that there Aréendependent and stochastically identical
Gilbert-Elliot channels [1]. As illustrated in Fig. 1, the state of a channel — “good” or “bad”
— indicates the desirability of accessing this channel and determines the resulting reward.

The transitions between these two states follow a discrete-time Markov chain with transition
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probabilities {p;; }i je(o,1;.- This channel model has been commonly used to abstract physical
channels with memory. Consider, for example, the emerging application of cognitive radios for
opportunistic spectrum access where secondary users search in the spectrum for idle channels
temporarily unused by primary users [2]. For this application, the good state represents an
idle channel while the bad state an occupied channel. When the primary network employs
load balancing across channels, the occupancy processes of all channels can be considered
stochastically identical.

In each time slot, a user choosgs out of the N channels to sense and subsequently access
channels sensed to be in the good states. Sensing is subject to errors: a good channel may be
sensed as bad amnite versa. Accessing a good channel results in a unit reward, and no access
or accessing a bad channel leads to zero reward. The design objective is the optimal sensing

policy for dynamic channel selection in order to maximize the expected long-term reward.

Po1

Poo (bad) (good) P11

P1o

Fig. 1. The Gilber-Elliot channel model.

B. Restless Multi-armed Bandit and Myopic Policy

This problem can be formulated as a partially observable Markov decision process (POMDP)
for generally correlated channels [3], or a restless multi-armed bandit process (RMBP) for inde-
pendent channels considered here. The maximum throughput of the multi-channel opportunistic
system is essentially the long-term expected maximum average reward, or the time-normalized
value function, of an RMBP. Unfortunately, obtaining optimal solutions to a general restless
bandit process is PSPACE-hard [4], and analytical characterization of the performance of the
optimal policy is often intractable.

We thus focus on the low-complexity myopic policy which has been shown to be optimal for

this class of restless bandit problems under certain conditions (see Sec. I-C). Specifically, we
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establish a semi-universal structure of the myopic policy and characterize its performance and
approximation factor as detailed below.

1) Structure of the Myopic Policy: We first show that the myopic policy has a semi-universal
structure under the condition that the probability of false alarm of the channel state detector
is below a certain value. This structure reveals that the myopic policy does not require the
knowledge of the transition probabilities of the Markovian channel model except the order of
p11 andpo;.

2) Performance of the Myopic Policy: Based on the semi-universal structure of the myopic
policy, we develop closed-form lower and upper bounds on the steady-state throughput under the
myopic policy that monotonically tighten as the numlérof channels increases. When each
channel is positively correlategh,¢ > po1), we further obtain the limiting performance of the
myopic policy asN approaches to infinity.

3) Approximation Factor of the Myopic Policy: By considering a genie-aided system, we
develop an upper bound on the optimal performance, which provides a performance benchmark
for the myopic policy. This result, coupled with the lower bound on the performance of the
myopic policy, leads to an analytical characterization of the approximation factor of the myopic
policy. Specifically, we show that the myopic policy achieves at I@ésd)f the optimal per-
formance when channels are positively correlated, maﬂ{%, %} of the optimal performance
when channels are negatively correlated < po1)-

C. Related Work

1) Perfect Sate Observation: Under the assumption of single-channel perfect sensing, the
semi-universal structure of the myopic policy has been established fof, alhd the optimality
of the myopic policy proved forN = 2 and conjectured forN > 2 in [5]. Furthermore,
closed-form bounds on the throughput under the myopic policy have been established. A recent
follow-up work [6] has extended the optimality of the myopic policy to/dlunder the condition
of p11 > por.

For independent and non-identical channels under multi-channel perfect sensing, Whittle’s
index policy under both discounted and average reward criteria has been established in [7].
An efficiently computable upper bound on the optimal performance has been established based

on Whittle’s relaxation. Numerical results have illustrated the strong performance of Whittle’s
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index policy. For independent and identical channels, Whittle’s index policy has been shown to be
equivalent to the myopic policy. The structure of the myopic policy under multi-channel sensing
has been established, and the myopic policy has been shown to be optimalivhefy — 1.
Furthermore, an approximation factor of the myopic policy has been developed for géheral
and N. Interestingly, the approximation factor we establish in this paper coincides with the one
obtained in [7].

2) Imperfect Sate Observation: Under imperfect sensing, the design of multi-channel op-
portunistic access was addressed in [8] under a general correlated channel model. This problem
requires the joint design of the channel state detector, the access policy and the sensing policy. A
separation principle has been established which decouples the design of channel state detector and
access policies from that of channel sensing policy. The channel sensing policy then falls into an
unconstraint POMDP problem. In [9], the structure and optimality of the myopic sensing policy
has been established under certain conditions for independent and identical channels. Specifically
under single-channel sensing, a simple and robust round-robin structure of the myopic policy has
been established when the false alarm probability of the channel state detector is below a certain
value. Based on this structure, the myopic policy has been shown to be optimél$og. In

this paper, we extend the structure of the myopic policy to multi-channel sensing scenarios.

Il. PROBLEM FORMULATION
A. System Model
LetS(t)é[Sl(t), ..., Sn(t)] denote the channel states, whetgt) € {0 (bad 1 (good)}
is the state of channel in slot t. At the beginning of each slot, the user first decides which
M channels to sense for potential access. Once a channel (say chansealhosen, the user
detects the channel state, which can be considered as a binary hypothésis test
Ho: Sn(t) =1 (good wvs. Hi: S,(t) =0 (bad.
The performance of channel state detection is characterized by the ROC which relates the

probability of false alarn¥ and the probability of miss detection

2 Pr{decideH;|H, is true}, 52 Pr{decide’H,|H; is true}.

IWe consider here the nontrivial cases wiii andpi; in the open interval of (0,1). When they take the special valué of

or 1, channel state detection can be simplified. Extensions to such special cases are straightforward.
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Based on the imperfect detection outcome in g)dhe user chooses an access actigiit) €
{0 no access1 acces$ that determines whether to access chamnfdr transmission. We note
that the design should be subject to a constraint on the probability of accessing a bad channel,
which may cause interference or waste energy. Specifically, the probability of coli%ian
perceived by the primary network in any channel and slot is capped below a predetermined
threshold¢, i.e,

P ()2 Pr(®,(t) = 1|S,(t) =0) < ¢, Y n, t.

This constrained stochastic optimization problem requires the joint design of the channel state de-
tector {.e., how to choose the detection thresholds to trade off false alarms with miss detections),
the access policy that decides the transmission probabilities based on imperfect detection out-
comes, and the sensing policy for channel selection. This problem is formulated as a constrained
POMDRP in [8] for generally correlated channels. A separation principle has been established
that the optimal detector is the Neyman-Pearson detector with the probakolitmiss detection

given by the maximum allowable probabilityof collision, and the optimal access policy is to
simply trust the detection outcomes: transmit over a channel if and only if it is detected as good.
Thus, the user can obtain a unit reward on a chosen channel if and only if it is in good state
and detected correctly.€., no false alarm). The optimal sensing policy can then be designed
using the optimal detector and the optimal access policy without the constraint on accessing
a bad channel, which becomes an unconstrained POMDP addressed here. The objective is to
maximize the average reward (throughput) over a horizo#' sfots by choosing judiciously a
sensing policy that governs channel selection in each slot.

Since failed transmission may occur, acknowledgements (ACKs) are necessary to ensure
guaranteed delivery. Specifically, when the receiver successfully receives a packet from a channel,
it sends an acknowledgement to the transmitter over the same channel at the end of the slot.
Otherwise, the receiver does nothings, a NAK is defined as the absence of an ACK, which
occurs when the transmitter did not transmit over this channel or transmitted but the channel is in
bad state. We assume that acknowledgements are received without error since acknowledgements

are always transmitted over good/idle channels.
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B. Restless Multi-Armed Bandit Formulation

Due to limited and imperfect sensing, the system sgétét), - -, Sy(t)] € {0,1}Y in slot
t is not fully observable to the user. It can, however, infer the state from its decision and
observation history. It has been shown that a sufficient statistic of the system for optimal
decision making is given by the conditional probability that each channel is in ktgieen
all past decisions and observations [10]. Referred to as the belief vector, this sufficient sta-
tistic is denoted byQ(t)é [wi(t), -+ ,wn(t)], wherew;(t) is the conditional probability that
S;(t) = 1. In order to ensure that the user and its intended receiver tune to the same channels in
each slot, channel selections should be based on common observations: the acknowledgements
K(t) € {0 (NAK), 1 (ACK)}* in each slot rather than the detection outcomes at the transmitter.
Let /(¢) denote the sensing action that consistdfo€hannels to sense in slotGiven the sensing
action I(t) and the observationgK;(t) € {0,1} : ¢ € I(¢)} in slot ¢, the belief vector for slot

t + 1 can be obtained via the Bayes rule.

P11, ielI(t),K(t)=1
wilt +1) = { T(o72lm), i€ 1(t),Ki(t) =0 1)
[(wi(t)), i 7 1(t)
where the operatol(-) is defined as
A
F(.I):«Tpll + (1 — ,T)p(]l.
A sensing policyr specifies a sequence of functions= [ry, m, -+, 7] Wherer;, maps a

belief vector(2(¢) to a sensing actiofi(¢) for slot¢. Multi-channel opportunistic access can thus

be formulated as the following stochastic optimization problem.

Y

> R(m(Q))(1)

t=1

7" = argmax E,
K

where R(m;(€2(t))) is the reward obtained when the belief(}¢) and channelsr;(2(¢)) are
selected, an(1) is the initial belief vector. This problem falls into the model of an RMBP by
treating the belief value of each channel as the state of each arm of a bandit. If no information
on the initial system state is available, each entrg20f) can be set to the stationary distribution

w, of the underlying Markov chain:

Po1

Wy = ———.
Po1 + P1o

(2)
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Let V;(€2) be the value function, which represents the maximum expected total reward that
can be obtained starting from slogiven the current belief vectde. Given that the user takes
action/ and observe& = { K;},c;, the expected reward that can be accumulated starting from
slot ¢ consists of two parts: the expected immediate rewagdw;(1 — ¢) and the maximum
expected future rewartd, (7 (2|1, K)), where7 (|1, K) denotes the updated belief vector for
slot ¢t + 1 after incorporating actiod and observation& as given in (1). Averaging over all
possible observations and maximizing over all actions, we arrive at the following optimality

equation.
Vr(UT)) = mlax Vierwi(1 —e€),

Vi) = max(Bierwi(l —€) + E[Viyr (T (11, K))).

In theory, the optimal policyr* and its performancé’ (2(1)) can be obtained by solving
the above dynamic programming. Unfortunately, due to the impact of the current action on the
future reward and the uncountable space of the belief vector, obtaining the optimal solution using
directly the above recursive equations is computationally prohibitive. Even when approximate
numerical solutions can be obtained, they do not provide insight into system design or analytical

characterizations of the optimal performaricéQ(1)).

IIl. STRUCTURE AND PERFORMANCE OFTHE MYOPIC PoLICY
A. Myopic Policy
A myopic policy ignores the impact of the current action on the future reward, focusing solely
on maximizing the expected immediate rewdd?(I(¢))]. Myopic policies are thus stationary.

The myopic action/ under belief stat€) = [wy, -+ ,wy] is simply given by

~

I(Q) = arg max Yie1w;. 3)

In general, obtaining the myopic action in each slot requires the recursive update of the belief
vector 2 as given in (1), which requires the knowledge of the transition probabilities .
Interestingly, it has been shown in [9] under single-channel sengihg=(1) that the myopic
policy has a simple structure that does not need the update of the belief vector or the precise

knowledge of the transition probabilities if the probability of false alarm is below a certain value.
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Surprisingly, the myopic policy with such a simple and robust structure achieves the optimal
performance forV = 2 [9]. Under multi-channel sensing/{ > 1), extensive simulations have
shown that the myopic policy achieves the optimal performance. We thus conjecture that the
optimality of the myopic policy holds for generdl and N. In the next section, we show that
the structure of the myopic policy can be directly generalized to multi-channel sensing scenarios.

Based on this structure, we characterize the performance of the myopic policy.

B. Sructure

We first present the following assumptions.
Al: The initial belief values are bounded betwegn and p;.

A2:
min{po1, p11} (1 — max{po1, p11})
~ max{po1, p11 }(1 — min{po1, p11 }

Assumption Al will only be used in Theorem 1 which describes the structure of the myopic
policy. We note that the structure can be directly extended if assumption A1l does not hold. We
assume Al in Theorem 1 for the easy of presentation.

For Assumption A2, the allowed probability of miss detectibplays a major role since
can be reduced to an arbitrarily small value at the price of increaseldwever, bothe and §
can be improved by increasing the sensing/detection tirae taking more measurements). The
caveat is the reduced transmission time for a given slot length. This interesting tradeoff between
the complexity of the detector at the physical layer and the transmission strategy at the Medium
Access Control (MAC) layer of a communication network can be complex and is beyond the
scope of this paper.

The implementation of the myopic policy can be described with a queue structure. Specifically,
all N channels are ordered in a queue, and in each slot, thbstannels at the head of the
gueue are sensed.

Theorem 1. The Semi-Universal structure of the myopic policy
The initial channel orderin@)(1) is determined by the initial belief vector as given below.

wm(l) > 2 w”N(l) = Q<1) = (nlv"' 7nN)'
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Under assumption Al and A2, channels are reordered at the end of each slot according to the

following simple rules. Whem,; > pg1, the channels observed with ACK will stay at the head

of the queue, and the channels observed with NAK will be moved to the end of the queue while

keeping their order unchanged. When < pg:1, the channels observed with NAK will stay at

the head of the queue while reversing their order, and the channels observed with ACK will be

moved to the end of the queue. The order of the unobserved channels are also reversed.
Proof: Let Q(t) = (n1,ne, - ,ny) (n; € {1,2,---, N} Vi) be the queueing order of

channels in slot. We need to show that
Wny (t) 2 e Z Wny (t) (4)

We first present the following properties of the operdior) defined in (1).

P1. I'(x) is an increasing function fop;; > po; and a decreasing function f@r; < po;.
P2. VO <z <1, po1 <T'(x) < piy for piy > por andpyy < I'(z) < por for p1y < por.

P3. Forpi > por ande < 22, we havel'(757—) < I'(W) Vpou < w,w’ < pu; for

P11 < Po1 ande < %, we havef(ﬁ) > F(w’) Vpll < w,w’ < po1-

P1 and P2 follow directly from the definition df(z). To show P3 forp;; > po1, it suffices to

showﬁ < pe1 due to the monotonically increasing property Itfz) and the bound on

w'. Noticing thatew;(“l’_w) is an increasing function of both ande, we arrive at P3 by using
the upper bounds o ande. Similarly, we can show P3 fop; < po;.

We now prove (4) by induction. For = 1, (4) holds by the definition of)(1). Assume
that (4) is true for slot. We show that it is also true for slot+ 1.

Consider firstp;; > po;. For anl < i < M with K,,, = 1, w,,(t + 1) = p1; which achieves
the upper bound of the belief values (See P2). Foi anj < M with K, =0, w,,(t+1) is
upper bounded by those of unobserved channels due to P3. Among those channels dhserved
the order of their believes remains unchanged inslot due to P1. Similarly, the order of the
belief values of the unobserved channels also remains unchanged int+slot

For p11 < po1, the belief values of channels observeavill achieve the lower boung,; of
the belief values (See P2). For an< j < M with K,,, = 0, w,,(t + 1) is lower bounded by
those of unobserved channels due to P3. Among those channels ob8getkiedorder of their
believes will be reversed in slét 1 due to P1. Similarly, the order of the belief values of the

unobserved channels will also be reversed in sletl.
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We thus proved (4) for alt > 1 under the structure of the myopic policy. [ |
Based on this structure, the myopic policy can be implemented without knowing the channel
transition probabilities except the order @fi andpy;. As a result, the myopic policy is robust
against model mismatch and automatically tracks variations in the channel model provided that
the order ofp;; andpy; remains unchanged. Following tlelief-independence property of this
simple structure, we present the following corollary which allows us to work with a Markov
reward process with a finite state space instead of one with an uncountable statei.space (
belief vectors) as we encounter in a general POMDP.
Corollary 1: Let Q(t) = (ny,n2,--- ,ny) (n; € {1,2,---, N} Vi) be the queueing order of
channels in slot, where myopic actiod (t) = {n,; }}4,. Define§(t)é[5n1(t), Sy (), Sna (1)]
and E(t)é{el(t),@(t), < epm(t)}, where{e;(t) }i<i<m, +>1 are ii.d. binary random variables
taking value0 with probability e and 1 with probability 1 — . Under assumption A2, the
augmented Markov proce€s(¢)2[S(¢), E(t)] form a2¥+M _state Markov chain, and the per-
formance of the myopic policy is determined by the Markov reward prot@ss), R(¢)) with
R(t) = Zf‘ilsm (t)ei(t).
Proof: é(t) specifies the states of all channels, the queueing order of channels under the my-
opic policy, and the observations obtained in sl@pecifically, the observatiofi (NAK), 1 (ACK))
on channeh; (1 <i < M) in slott is given byS,,,(t)e;(t). Based on the structure of the myopic
policy, G(t) determines the probability distribution € (¢ + 1), i.e., G(¢) is a Markov chain.
Furthermore, the rewarf(t) in slott is given by the number of channels observed with ACK.
[
Theorem 1 and Corollary 1 provides foundations in analyzing the performance of the myopic

policy.

C. Performance

In this section, we analyze the performance of the myopic policy. Under the optimality
conjecture (see Sec. llI-A), the throughput achieved by the myopic policy defines the performance
limit of a multi-channel opportunistic communications system. In particular, we are interested
in the relationship between the throughput achieved by the myopic policy and the noimider

channels.
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1) Uniqueness of Seady-Sate Performance and Its Numerical Evaluation: We first establish
the existence and uniqueness of the system steady-state performance under the myopic policy.
The steady-state throughput under the myopic policy is given by

U@()2 Jim SR

(5)

where V1.7(Q(1)) is the expected total reward obtained Thslots under the myopic policy
when the initial belief i2(1). From Corollary 1,U(€2(1)) is determined by the Markov reward
process{G(t), R(t)}. It is easy to see that the¥ " -state Markov chaif{ G(t)} is irreducible

and aperiodic, thus has a limiting distribution. As a consequence, the limit in (5) exists, and the
steady-state throughput is independent of the initial belief value(1).

Corollary 1 also provides a numerical approach to evaluatinigy calculating the limiting
(stationary) distribution oﬁ(t) whose transition probabilities can be directly obtained from the
transition probabilities of the channel states. This numerical approach, however, does not provide
an analytical characterization of the throughpuin terms of the numbeN of channels and
the transition probabilitie§p; ;}. In the next section, we obtain analytical expression&’ @nd
its scaling behavior with respect t§ based on a stochastic dominance argument.

2) Analytical Characterization of Throughput: From the structure of the myopic policy, the
throughput is determined by how often the user switches channels. ¥henp,;, the event of
a channel switching is equivalent to a skathout reward. The opposite holds whern, < pg;: a
channel switching corresponds to a shth reward. For both cases, we note that the user may
switch to the same channel when a channel switch is needed.

We thus introduce the concept winsmission period (TP), which is the time period starting
from the slot the user switches to a channel and ending at the slot that the next switch on this
channel is needed (see Fig. 2 for an example under single-channel sensing). Note that the user
may switch to the same channel. We count the transmission periods in the order of its starting
point. Let L, denote the length of théth TP. We then have a discrete-time random process

{Lx}%2, with a state space of positive integers.

Lemma 1. )
M(1—1/L), pu > pn
U — i . (6)
M/L, P11 < Po1
where L = limg_ % denotes the average length of a TP.
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channel switching

-

~— Lk:34> Ly, =6 t

Fig. 2. The transmission period structure.

Proof: Consider firstp;; > po;. Let kr denote the number of channel switches during a
finite horizon of lengthT'. Since a channel switch represents a loss of a unit of reward, the
throughputUr during the finite horizon is given below.

MT — k
Ur = TT 7)

Let jr denote the number of TPs during the finite horizon. We have= M + kr since a
channel switch initializes a new TP. It is easy to see gt < ¥ "7 L, < MT + S+ L.

Note that the length of a TP is finite almost surely. We thus have
P

=L. (a.s.) (8)
From (7) and (8), we have

: , k _
U:%EEOUT —Mjlgrolo(l— W) =M(1-1/L). (a.s.) 9

The case fop;; < po; can be similarly obtained by observing that a channel switch represents
a gain of one unit reward. [ |

Based on Lemma 1, throughput analysis is reduced to analyzing the average TPIlength
We note that the distribution of.;, is determined by the belief value in the first slot of the
k—th TP. Under single-channel sensing (= 1), the approach is to construct first-order Markov
chains that stochastically dominate or are dominated by} ,. The stationary distributions of
these first-order Markov chains, which can be obtained in closed-form, lead to lower and upper
bounds onU according to (6). Specifically, fop1; > po1, a lower bound orU is obtained by
constructing a first-order Markov chain whose stationary distribution is stochastically dominated
by the stationary distribution of L} ,. An upper bound onl/ is given by a first-order
Markov chain whose stationary distribution stochastically dominates the stationary distribution

of {L;}?2,. Similarly, bounds orU can be obtained fop,; < po:.
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Theorem 2: Define functions

f(2)2 = -
o (P11=po1)(1—p11(1—€))\’
L—a(l = )(1 - g mma=a )
A l—wy(l—€)+a
h(z,y, z,a,b)=
y Jy ~y Wy ( ( _ )2+( _ )b+1)z )
1 — a2 n? — )
and for any functiorv(-) of vector |z, y, z, a, b],
A 1
gov(z,y,z,a,b)=—5— . (20)
(F2% — 2)o(,y,2,a,b) + 1

Under assumption A2, we have the following lower and upper bounds on the throughyutn
M =1.

o Case 1. pi; > po

1— 1-—
fle)i-9 o wl-9 a1
1 — (p11— fler))(1 —¢) 1 — (p11 —wo)(1 —¢)
wherew, is given by (2) and
¢ = (wo—c2)(p11 — ]901)N_17
o — Po1(1 — po1 + €p11)
1 —por+epor
o Case 2. p11 < por
1
g o h(.’ljl, Y1, 21,01, 2N - 4) S U S g o h(flf_’ 1 — 21, 1 — Y1,01, 3)7 (12)
1
where
£ = Po1
p11(p11 — por) + por’
y = 1—(1—€)(pulpi1 — por) + po),
21 = (1 - €)P01>
a; = (1 - 6)(Wo - pn)(pn - p01)-
Proof:

o Case 1. p11 > po
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Let w, denote the belief value of the chosen channel in the first slot okheTP. The length

Ly (wy) of this TP has the following distribution.

PriLe(w) = =4 A = (13)

we(1 =1 = pu(l =€), 1>1

It is easy to see that if’ > w, thenL,(w’) stochastically dominates;(w).

<Y

(@) p11 > por (b) p11 < por

Fig. 3. Thej-step belief update when unobserved.

Note that thej-step belief updaté”(w) when unobserved is given by (See Fig. 3)
Pj(w) = Wo — (Wo — w)(p11 — p01)j~

Based on the structure of the myopic policy, we haye = I'/+")(—£—), where J, =

ZiNz_llLk_i denotes the number of consecutive slots in which the chosen channel has been

unobserved since the last visit, amddenotes the belief value of the chosen channel at the last

time the user left it. From assumption AR(_=1—) < I'(po1) < w,, Wherew, is the stationary

distribution of the Gilbert-Elliot channel given in (2). Based on the monotonic convergence

property of thej-step belief update (see Fig. 3 (a)), we haye< w,. L;(w,) thus stochastically

wo(l—e

dominatesl;(wy), and the expectation of the formér, (w,) = 1+ 1_p11(1_)5), leads to the upper
bound ofU given in (11).

Next, we prove the lower bound &f by constructing a hypothetical system where the initial
belief value of the chosen channel in a TP is a lower bound of that in the real system. The
average TP length in this hypothetical system is thus smaller than that in the real system,
leading to a lower bound o®/ based on (6). Specifically, sineg, = I'Vkt1)(—2 ) and

ex+1—x

N-1 — —
Jk = Zi:l Lk—i Z N + Lk_l - 2, we havadk Z FN+Lk71 1(%) Z FN+Lk71 l(ﬁpolg-f%pm)
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based on the monotonic increasing property of ttetep belief update (see Fig. 3 (a)). We thus
construct a hypothetical system given by a first-order Markov chaji};2 , with the following

transition matrixR = {r; ;}.

_DN+i-l__en ' =
Py = 1 P (ep01+g1—p01)’ ' ' 12 1’ )= ! . (14)
PAFL (P )(] — )7 (py1 )2 (1 —pu(l —€)), i>1, j>2

epo1+1—po1

Lemma 2: The stationary distribution of the first order Markov chaity }>° , is stochastically

dominated by the stationary distribution £} ;.
Proof:

Let w;, denote the expected probability that the chosen channel is in state 1 in the first slot of
the k-th transmission period dfZ}, }72 ;. Assume in thé-th transmission period, the distributions
of L) and L, both equal to the same distributioTn), which may or may not be the stationary
distribution of {L;,}72, . Next we showwy,, > w;,,, for anyn > 1 by induction.

Whenn = 1, we have

0o k i €T
Wit1 = EREr e p, [DTF Rt (m)wk = Pr(Ly =1)
e N—1+L €Po1
> SZEL om0 k(m)wk =Pr(Ly =1)
SR i) Kl G U
epo1 + 1 — po1
- (15)
Assumewy, 4, > wy,,,,, then
We4n+1 = Zl:lELkJranJr%‘“,LkJrnfl[F i=htn N2 (m”Lk—kn = Z]PT(Lk—i-n = l)
00 N—14Lpin €Po1 _ _
= 2l:1ELk+an+27"',Lk+n71[F ok (m>|Lk+n = l|Pr(Lytn =1)
=y PN P ypp, =1 16
=1 (€p01+1_p01) (Litn =1) (16)

Sincewyyn > wy,,,, by (13), we have

Pr(Lk—HL = l) < Pr(L;e—i-n = l)? if 1=1;

Pr(Lisn =1) > Pr(Ly,, =1), if 1>1. (17)
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Since the smallest number in the ser[é%‘”l(mnjf’%m) is the first one, by (17) and the

fact that>;°, Pr(Lyy, = 1) = X2, Pr(L;,, =) = 1, we have

€Po1
epo1 + 1 — pon

€Po1

S0 PN+
= (€p01 +1—pn

) Pr(Lgyn = 1) > 52, V1Y )Pr(Lyy = 1) = Wiynpa
(18)

Combine (16) and (18), we hav@, ,+1 > Wy, ;-

By the above induction, we havg,, > w; ., for anyn > 1. So the stationary distribution
of the first order Markov chaig L} }?° , is dominated by the stationary distribution ok, }>° ,.

u

Let L’ denote the average length of a transmission periofl,oBased on (6) and Lemma 2,
L’ leads to a lower bound ofy. Last, we obtain closed-forni’ by solving the stationary
distribution of the first-order Markov chaifiL} }72,.

Recall thatR = {r;;} is the transition matrix of L, }7>,, wherer; ; is given in (14). Let
R(:, k) denote thek-th column of R. We have
__ R(2)

I—pu(l—c¢)’
wherel is the unit column vectofl, 1, ...]*. By the definition of stationary distribution, we have,
fork=1,2,---,

1-R(;1) R(;, k) = R(:,2)(pu(1 — €)" 2 (k>2) (19)

(A1, Az, -+ [R5, k) = A, (20)

which, combined with (19), leads to

A2
(I=pu(l—¢)
Substituting (21) into (20) fok = 2 and solving for\,, we have\, = f(c;)(1—¢€)(1—py1(1—¢)),

where f(¢;) is given in (11). From (21), we then have the stationary distribution as

{ 1= fle)(1 - o), k=1

A =1-— Me = da(pri(1—€))2. (k> 2) (21)

A = : (22)

fle)A—e)(pu(l —€)">(1—pu(l—e), k>1

which leads tol = >75° kM, =1+ %

« Case 2: P11 < Po1
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Let w;, denote the belief value of the chosen channel in the first slot okieTP. Define the

operatore(-) asc(r) = ;= We have
wk(l - 6)7 (=1
Pr[Lk(wk) = l] = I—9 ) 3 .
(1 —wr(X =) I (1 = T o) (we)(1 = )T o) Hwp)(1 =€), 1>1

(23)
Consider first the upper bound. We construct the following hypothetical system where the
stationary distribution of a TP is stochastically dominated by the one in the real system. The
average TP length in this hypothetical system is thus smaller that in the real system, leading
to a upper bound o/ based on (6). Specifically, the distribution of a TP in the hypothetical

system has the following form.

Py =l = | w7 T e
(1 —wr(1—e)(1 —por(l—e))2T(p)1—¢), I>1
We first show thatl (wy) is stochastically dominated by (w). Note thatPr[L) (w) =1] >0
for all [ € Z* ando°, Pr[L} (wx) = {] = 1. The distribution ofL} (wy) given in (24) is thus
well-defined. Sincd’(p;1) < T'o c(w) < po; for any p;y < w < poi, we havePr[L) (wg) =[] <
Pr[Li(wy) =1] for all I > 2. Lj (wy) is thus stochastically dominated Wy, (wy).

It is easy to see thakj (w’') is stochastically dominated b¥, (w) if W' > w. L (w') is thus
stochastically dominated b, (w) if w’ > w. Based on the structure of the myopic policy, it is
clear that whenl;,_; is odd, in thek-th TP, the user will switch to the channel visited in the
(k—2)-th TP. As a consequence, the initial beligfof the k-th TP is given by, = I'(Fs-1+1)(1),
When L,_, is even, we can show that, < I'‘z»-1+4)(1), This is because that fak,_; even,
the user cannot switch to a channel visited ; + 2 slots ago, and(1) decreases with for
evenj’s and V(1) > I'(1) for any even; and odd: (see Fig. 3 (b)). We thus construct a

hypothetical system given by the first-order Markov chfiri }2° ; with the following transition

probabilities.
(Hri ()1 - +1- T, i iis odd,j =1
(1 =T (1)1 = €)1 —por(l =€) *T(pu)(1 —¢), if iisodd,j >2
TZ’,' = ) . . ’
J F;zz)lll)rz+4(1)(1 —6) 41— %’ if 7iseven,j =1
[ (=T (DA =)L =por(1 =€) ?*T(pi)(1 —¢), if iiseven,j>2
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Similarly to Lemma 2, it can be shown that the stationary distributioff ;° , is stochastically
dominated by that of L, } ;° ,. Furthermore the stationary distribution{af; };>, can be obtained
in closed form by using an approach similar to that in Case 1, leading to the upper bound on
U given in (12).

We now prove the lower bound. Consider the hypothetical system with the distribution of a

TP as given below.

PO (1 —€) + 1 — B2, l=1
Pr{) () = = { T+ Hon) . (25)
(1=we(1 =) =T(pn)(1 =€) Ppu(l —¢), 1>1

Similarly, L} (w) is well-defined and stochastically dominateg(wy). It is easy to see that
L) (v") stochastically dominates; (w) if w’ < w. L} (w") thus stochastically dominatés, (w) if
w < w.

Based on the structure of the myopic poliey, = p\***" when L,_; is odd. WhenL,_,
is even, to find a lower bound an,, we need to find the smallest ogdsuch that the last visit
to the channel chosen in tiieth TP isj slots ago. From the structure of the myopic policy, the
smallest feasible odglis L,_, +2N —3, which corresponds to the scenario whereNakthannels
are visited in turn from thék — N + 1)-th TP to thek-th TP with LNy = Ly_ni2 =+ =

(Li—1+2N-3)

Ly_o = 2. We thus havev;, > p;| . We then construct a hypothetical system given by

the first-order Markov chaif L }>, with the following transition probabilities.

;

Ff):l(i)lll)ri—’_l(l)(l - 6) +1- F?z?fm if 7 is Odd’j =1
(1= D)1= )L~ pou(l — Y Tlpu)(1 o). if iis odd,j > 2
’r’i7- = . . . :
J ng)lll)rz—i-QN—g(]_)(l —_ E) + 1— %’ |f 7 IS even,] =1
| (1 =T"2V3(1)(1—€))(1 — por(1 — €)Y T(pu1) (L —€), if i is even,j > 2

The stationary distribution of this hypothetical system leads to the lower bound given
in (12). u

For multi-channel sensing{ > 1), it is difficult to construct first-order Markov process to
stochastically dominate or be dominated f; };° ;. Instead, we establish a uniform statistical
bound on the distributions of all TPs based on the structure of the myopic policy. The bounds
on the throughput when applied = 1 are thus looser than those under single-channel sensing
scenarios as given in Theorem 2.

Theorem 3: Recall the definition ofyo v(+) given in (10). Under assumption A2, we have the

following lower and upper bounds on throughgiatwhen M > 1.
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o Case 1. pi; > po

Mes(1 —€) <U< Mw,(1 —¢) . (26)
I —(pn—c3)(1—¢) 1 — (p11 —wo)(1—¢)
Wher603 = Wy — (WO — epole—f%pm)(pll _p01>|_%J
« Case 2: P11 < Po1
1
Mg owvy(z1,y1,21,01,b1) <U < Mg Ovz(x—, 1—2z1,1—wy1,a1,b1), (27)
1

where

n() = 1= (wWo— (wWo—pu1) (P11 — por)? 3 72)(1 = o),

va(-) = 1—(pu(p11 — po1) + po1)(1 —e€),
Po1
p11(p11 — po1) + por’

y1 = 1—(pu(p11 — po1) +po1)(1 —e),

xrT =

21 = (1—é€)por-

Note thata; andb; can be arbitrary since they are arguments of the constant funatjoasd
V.
Proof:

« Case 1 p11 > por
Consider first the upper bound. Similarly to single-channel sensing, the belief waloéthe
chosen channel in the first slot of the-th TP is upper bounded hy,. L;(w,) thus stochastically
dominates.,(wy), and the expectation of the former leads to the upper bourid ginen in (26).

We now consider the lower bound. Recall that= I'/+*)(—=—), where.J, denotes the
number of consecutive slots in which the chosen channel has been unobserved since the last visit,
andzx denotes the belief value of the chosen channel at the last time the user left it. Based on the
structure of the myopic policy, the channel has the last priority when the user leaves it. It will
take at least = | slots before the user returns to the same chameel,J, > |4 — 1. Based
on the monotonic increasing property of thetep transition probability™” (w) (see Fig. 3 (a)),

we havew; = I/} (—2—) > Plir) () > T (2 ), Thus L (T3 (2 ))
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is stochastically dominated b¥(wx), and the expectation of the former leads to the lower
bound onU given in (26).

o Case 2. pi1 < por

Consider first the upper bound. Let denote the belief value of the chosen channel in the first
slot of thek—th TP. Based on the structure of the myopic policy, we haye- I'’/**1(1), where
J;, denotes the number of consecutive slots in which the chosen channel has been unobserved
since the last visit. From Fig. 3 (b), we hawg = I'/+*1(1) < I'’(1). Combined with the
hypothetical system given in (24),(T'*(1)) is stochastically dominated b#;(w;), and the
expectation of the former leads to the upper boundJogiven in (27).

We now consider the lower bound. Recall that= T'/**1(1). If If J, is odd, ther[/x*1(1) >

r2larl=1(1) since2|[ ] — 1 is an odd number (see Fig. 3 (b)). Jf, is even,i.e, the user has

N-M
M

I+ (1) > T2Larl=1(1). Combined with the hypothetical system given in (2B)(I2Lar)=1(1))
stochastically dominatek; (wy.), and the expectation of the former leads to the lower bound on
U given in (27).

stayed even slots before it returns this channel, thiens at least2| |. we havew =

[
Corollary 2: For p1; > po1, the lower bound on throughput increasingly converges to the
constant upper bound at geometrical rgig —pm)ﬁ as N increases; fop;; < po1, the lower
bound onU increasingly converges to a constant at geometrical (1ate— pll)%.

Proof: From the closed-form expressions of the lower boundd/ogiven in Theorem 2
and Theorem 3, it is easy to see that the lower bound is monotonically increasingVwith
Let = = |p11 — po1|- FoOr p11 > po1, after some simplifications, the lower bound has the form
a+ b/(zl37) + ¢), wherea,b,c (¢ # 0) are constants. The upper boundais- b/c. We have

L3 4e)—am
latb/(@ 3 +e)—ab/el _, ()(p/2) asN — oo. Thus the lower bound converges to the upper bound
xM
with geometric rater .
For p1; < po1, the lower bound has the form+ ¢/ (223711 + ), whered, e, f (f # 0) are

2047 )-
constants. It converges tb+ ¢/f as N — oco. We havelt</t" 1 %V;*f)‘d‘e/f‘ — O(e/(zf?))

as N — oo. Thus the lower bound converges with geometric reite [ |
The convergence of the lower bound to the upper bound whei py; can be explained as
follows. The upper bound given in Theorem 3 corresponds to the case where the belief in the

first slot of a TP is equal to the stationary distribution If a user can always switch to channels
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with probability w, being in good state when channel switches are needed, the throughput will
achieve the upper bound given in (26). Specifically, we have the following theorem, which gives
the closed-form performance under the myopic policy over a finite horizon.
Theorem 4: For p;; > por and N > MT, under assumption A2, the expected total reward
over T slots when the initial belief starts from the stationary distribution is given below.
(T 1)
1 — (p11—wo)(1 —¢)

‘A/lT(Q(l)) = Mwo(l - 6)( + 04)7 (28)

where

((wo _pll)(l - 6))2(1 — ((p11 —wo)(1 — 6))T71)
(1= (p11 —wo)(1 —¢))? '

Proof: From the structure of the myopic policy, if the user observes stétem a channel,

C4:1—

it will stay on that channel. Otherwise, it will switch to a new channel (with beligf Clearly,
V' does not depend o¥ since at mostV/T" channels need to be considered duringlots.
In the first slot, the user randomly choos&schannels and getd/w,(1 — €) units of reward.
Then the user will either stay or switch on a channel. This process is a Markov chain with states

“stay” and “switch” as shown below.

1 _pll(]- — 6)

pii(l—e) 1 —we(l—c¢)

wo(l —€)

Fig. 4. The Markov chain with states “stay” and “switch”.

If the user observe$ on a channel after the fist slot, it will stay and ggt(1 — ¢) units
of reward on this channel. Otherwise it will switch to a new channel andug@t — ¢) units
of reward. SoV is determined by the distribution of the states of the above two-state Markov

chain.
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M—1
V(wo T) = MOT ol —6) 1—wp(1—g) | P79 1mpnll=9) pull=9 | a0
wo(l—€) 1—wo(l—c¢) wo(l—¢
. T_1 » e v . 1 wo(l—e) 1—p11(1—€)
_M(ZJ\/[:I[ 0(1 ) 1 0(1 )]{1—(p11—w0)(1—e) [ wo(l—e) 1_p11(1_€) ]
(p1 —wo) X — )M | 1=pu(l—€) pu(l—¢ -1 p11(1—e€) (1 e
+ I —(p11 —wo)(1 —¢) [ —wo(1 —¢) wo(l —€) }} [ wo(l —¢) ] Feell=9)
_ wo(l —€)(T'—1) _ wo(l = €)*(wo = p11)*(1 = ((p11 —wo)(1 — €)™ 1) w1 — €
_M(l— (P11 — wo)(1 —¢) (1= (p11 —wo)(1 —¢€))? +wo(l = ¢))
(29)
[ |
From (29), we immediately see that the throughpuis given as follows.
V(D) Muw,(1-¢)
U_:lll_rf)lo T o 1_(]911 _w0>(1_€)7 (30)

which agrees with the upper bound given in Theorem 3.

The monotonicity of the difference between the upper and lower bounds with respact to
illustrates that the performance of the multi-channel opportunistic system improves with the
number N of channels, as suggested by intuition. Eer > po;, the upper bound gives the
limiting performance of the opportunistic system wh&n— oo. By Corollary 2, the throughput
of a multi-channel opportunistic system with single-channel sensing quickly saturates as the
number of channels increases; it is thus crucial to enhance radio sensing capability in order to

fully exploit the communication opportunities offered by a large number of channels.

IV. APPROXIMATION FACTOR OF THEMYOPIC POLICY

Although the optimality of the myopic policy is proved fof = 2 and conjectured for general
scenarios based on numerical results, establishing the optimality or simple sufficient conditions
for optimality appears to be challenging. Under the discounted reward criterion, we have shown
that so long as the discount factor is less tHdM + 1), the myopic policy is optimal for
all N. In this section, we take a further step toward the optimality of the myopic policy. By
considering a genie aided system, we establish a bound on the performance loss of the myopic

policy and its approximation factor regarding to the optimal policy.
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A. A Genie-aided System

In the Genie-aided system, we assume the user can sense, access, and obtain observations
(ACK/NAK) from all N channels . However, the user can only get reward filahchannels
determined at the beginning of each slot. Clearly, the myopic poliey ¢hooseM channels
with largest probabilities of being in staleto accrue rewards) is optimal since current choice
will not affect the belief transitions. Similar to Corollary 1, the reward process of the genie-aided
system is ergodic under assumption A2. Furthermore, we obtain an upper bound on the optimal
performance of the genie-aided system.

Theorem 5: Defineg2 PLtPu—Puri ynder assumption A2, the maximum steady-state through-

ep11+1—pi1
put U in the genie-aided system is upper bounded as given below.

o Case 1. p11 > po

_ o N
U < (Mpu — 52, i di)(1 —e), (31)

where
di, = (M — k) (pn — 2)(wo(1 — €))* (1 — wo(1 — €))¥ ",

« Case 2: P11 < Po1

_ N
U< (Mx—%2, § er)(1 —e), (32)
where
er = (M —k)(x — p11)(wo(1l — e))N_k(l — w,o(1 — e))k
Proof:

o Case 1. p11 > po

Based on the ergodicity of the reward process in the genie-aided system, the initial belief vector
does not affect the optimal performance. Without loss of generality, assume the state of each
channel starts from the stationary distribution As a consequence, the numbdeof channels
observed ad falls into the binomial distributionB(k, N,w,(1 — €)) in every slot. Since the
channels observed dswill have the largest belief valug,;; and other channels’ belief values

will be upper bounded by (_—'——) in the next slot, the expected reward obtained under the



TECHNICAL REPORT TR-09-01, UC DAVIS, MARCH, 2009. 24

myopic policy will be upper bound by the right-hand side of (31). We thus proved the upper

bound onU.
o Case 2 P11 < Po1

Similarly, we assume the state of each channel starts from the stationary distribytathout

loss of generality. The numbér of channels observed dsfalls into the binomial distribution

B(k, N,w,(1 —¢)) in every slot. Since the channels observed agll have the smallest belief
— . o :

value p;; and other channels’ belief values will be upper boundeth%nJr;—l_pn) in the next

slot, the expected reward obtained under the myopic policy will be upper bound by right-hand

side of (32). We thus proved the upper boundon [ |

B. Approximation Factor

Clearly, the optimal performance of the genie-aided system is an upper bound on the maximum
throughput in the original multi-channel opportunistic access system. In other iopsyides
a performance benchmark of all sensing policies, including the myopic policy. To better bound
the performance of the myopic policy, we present another lower bound on the throughput
under the myopic policy.

Theorem 6: Let U be the throughput under random sensing policy that chodsesit of NV
channels with uniform probabilityi.€., choose any set af/ channels with probabilitﬂ/( Z )),

and U* the maximum throughput under the optimal policy. We have
Muw,(1—e)=U <U <U*<U < Nuw,(1—e). (33)

Proof: Since channels are stochastically identical, the random sensing policy is equivalent
to the static policy that chooses a constant set/o€hannels in each slot. Clearly, the long-run
throughput of the static policy on a chosen channel is given by the stationary distrilaytion
multiplied by the probability1 — ¢) of no false alarm.

To provef]* < U, we note that the expected immediate reward under the random sensing
policy in each slot is given by the expected sumidf randomly chosen belief values under
any given policy (including the myopic policy). Since the expected immediate reward under the
myopic policy in each slot is given by the expected sum of the fifdiargest belief values. The

throughput under the myopic policy is thus lower bounded by that under the random sensing

policy.
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The proof forU < U* < U is trivial. To proveU < Nw,(1 — ¢), we note thatVw,(1 — ¢) is
the throughput under the policy that senses and accrues rewards from all /gfd¢hannels.m
Combining the maximum of the lower bounds éhgiven in Theorem 2, Theorem 3 and
Theorem 6 and the minimum of the upper boundslbgiven in Theorem 5 and Theorem 6,
we obtain a uniform bound on the performance loss under the myopic policy. We further obtain
the approximation factor of the myopic policy as given below.
Corollary 3: Let né% (n € [0, 1]) be the approximation factor of the myopic policy. Under

assumption A2, we have

%, if pi1 > po
n > max{%, % , if P11 < Po1 - (34)
1, if p11 = por

Proof: From Theorem 6, we directly see that> % Considerp;; < po,. Based on

Theorem 5, we hav®/ < MT'(—21L—) (see the proof of Theorem 5). We thus have

ep11+1—p11
I T2y
U= U~ MU (7 5n) — 1+po—pn 2

For the trivial casep;; = po1, we note that the lower bound di given in Theorem 3 agrees

with the upper bound o/ given in Theorem 5. [ ]

V. NUMERICAL EXAMPLES

In this section, we demonstrate the tightness of the bound§ @iven in Sec. IlI-C2 and
Sec. IV-A. In patrticular, we are interested in the lower and upper bounds on the performance
of the myopic policy given in Theorem 2 and Theorem 3, and the upper bound on the optimal
performance in the genie-aided system given in Theorem 5. We also generate the performance
of the myopic policy and the optimal performance in the genie-aided system by Monte Carlo
simulations. Fig. 5 illustrates the bounds on the performance of the myopic policy under single-
channel sensing. Fig. 6 illustrates the bounds on the performance of the myopic policy under
multi-channel sensing = 2). We observe that the lower bound on the performance of the
myopic policy quickly converges to the upper bounds— oc when channels are positively
correlated. We also observe from Fig. 5— 6 that the upper bound on the optimal performance in

the genie-aided system is tight.
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Fig. 5. Performance bounds of the myopic poliey = 1, pi1 = 0.8, po1 = 0.2, € = 0.0312).

VI. CONCLUSION AND FUTURE WORK

In this paper, we have analyzed the performance of the myepigiisg policy in multi-channel
opportunistic access under an independent and stochastically identical Gilbert-Elliot channel
model with noisy state observations. Based on the conjectured optimality of the myopic sensing
policy, the obtained analytical results allow us to systematically examine the impact of the number
of channels and channel dynamics (transition probabilities) on the system performance. An
approximation factor of the myopic policy has been established. Future work includes proving the
optimality conjecture of the myopic policy, and generalization to independent and stochastically

non-identical channel model by investigating Whittle’s index policy.
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